4806 independent reflections 4805 in

 $30\overline{53}$ reflections with $I > 2\sigma(I)$

Refinement?

 $R_{\rm int} = 0.039$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,3-Diallyl-1H-anthra[1,2-d]imidazole-2,6,11(3H)-trione

Zahra Afrakssou,^a Youssef Kandri Rodi,^a Hafid Zouihri,^b El Mokhtar Essassi^c and Seik Weng Ng^d*

^aLaboratoire de Chimie Organique Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdallah, Fès, Morocco, ^bCNRST Division UATRS, Angle Allal Fassi/FAR, BP 8027 Hay Riad, Rabat, Morocco, ^cLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, and ^dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 22 June 2010; accepted 24 June 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.049; wR factor = 0.153; data-to-parameter ratio = 20.4.

In the title compound, $C_{21}H_{16}N_2O_3$, the fused-ring system (r.m.s. deviation = 0.067 Å) is slightly buckled at the carbonyl C atom of the anthracenyl ring system [deviation = 0.177 (1) Å] that is closer to an allyl substituent. The two allyl units lie on the same side of the fused-ring plane but are oriented in opposite directions, with N-C-C-C torsion angles of 126.9 (2) and 116.7 (2) $^{\circ}$. In the crystal, the molecules are linked into chains propagating along the b axis by C- $H \cdots O$ hydrogen bonds.

Related literature

For a related structure, see: Guimarães et al. (2009).

Experimental

Crystal data

CarHerNaOa	$V = 1647.47(7) Å^3$
$M_r = 344.36$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 7.8539 (2) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 11.5822 (3) Å	T = 293 K
c = 18.1455 (4) Å	$0.40 \times 0.35 \times 0.20 \text{ mm}$
$\beta = 93.537 \ (1)^{\circ}$	

Data collection

Bruker X8 APEXII area-detector
diffractometer
22612 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.049$	236 parameters
$wR(F^2) = 0.153$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.31 \text{ e } \text{\AA}^{-3}$
4805 reflections	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C13-H13···O3 ⁱ	0.93	2.49	3.406 (2)	168
$C16-H16B\cdots O3^{i}$	0.97	2.42	3.362 (2)	165

Symmetry code: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

The authors thank Université Mohammed V-Agdal and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5112).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Guimarães, T. T., Da Silva Júnior, E. N., Carvalho, C. E. M., De Simone, C. A. & Pinto, A. V. (2009). Acta Cryst. E65, o1063.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.

Acta Cryst. (2010). E66, o1851 [doi:10.1107/S1600536810024748]

1,3-Diallyl-1*H*-anthra[1,2-*d*]imidazole-2,6,11(3*H*)-trione

Z. Afrakssou, Y. K. Rodi, H. Zouihri, E. M. Essassi and S. W. Ng

Comment

An imidazol-one such as 1H-anthra[2,1-d]imidazole-2,6,11(3H)-trione, in which the five-membered ring is fused with an anthraquinone system, alkyl halides under catalytic conditions to yield di-N,N-substituted derivatives that serve as starting reagents for the synthesis of other drugs. The anthraquinone system itself is found in a large number of pigments and dyes. The title compound (Scheme I, Fig. 1) is a deep orange material that may be useful as an organic fluorophone.

The title molecule features four rings that are fused together (r.m.s. deviation 0.067 Å). The fused-ring system is slightly buckled at that carbonyl C-atom, C3, of the anthracenyl system [0.177 (1) Å] that is closer to an allyl substituent. The pendant allyl units lie on the same side of the fused-ring plane but are oriented in opposite directions. The crystal packing is stabilized by C—H···O hydrogen bonds (Table 1).

Experimental

To a solution of 1H-anthra[2,1-*d*]imidazole-2,6,11(3*H*)-trione (1.00 g, 0.38 mmol), potassium carbonate (1.56 g,11 mmol) and tetra *n*-butyl ammonium bromide (0.12 g, 0.38 mmol) in DMF (20 ml)) was added allyl bromide (0.77 ml, 11 mmol). Stirring was continued at room temperature for 24 h. The mixture was filtered and the solvent removed. The residue was extracted with water. The organic compound was chromatographed on a column of silica gel with ethyl acetate-hexane (1/1) as eluent. Orange crystals were isolated when the solvent was allowed to evaporate.

Refinement

H atoms were placed in calculated positions (C–H = 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to $1.2U_{eq}(C)$.

Figures

Fig. 1. Displacement ellipsoid plot (Barbour, 2001) of $C_{21}H_{16}N_2O_3$ at the 50% probability leve. H atoms are drawn as spheres of arbitrary radii.

1,3-Diallyl-1*H*-anthra[1,2-*d*]imidazole-2,6,11(3*H*)-trione

Crystal data C₂₁H₁₆N₂O₃

F(000) = 720

$M_r = 344.36$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
<i>a</i> = 7.8539 (2) Å
<i>b</i> = 11.5822 (3) Å
c = 18.1455 (4) Å
$\beta = 93.537 (1)^{\circ}$
$V = 1647.47 (7) \text{ Å}^3$
Z = 4

Data collection

Bruker X8 APEXII area-detector diffractometer	3053 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.039$
graphite	$\theta_{\text{max}} = 30.0^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
φ and ω scans	$h = -11 \rightarrow 11$
22612 measured reflections	$k = -16 \rightarrow 16$
4806 independent reflections	$l = -25 \rightarrow 25$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.049$	H-atom parameters constrained
$wR(F^2) = 0.153$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0755P)^{2} + 0.2066P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{\rm max} = 0.001$
4805 reflections	$\Delta \rho_{max} = 0.31 \text{ e } \text{\AA}^{-3}$
236 parameters	$\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.0033 (11)

 $D_{\rm x} = 1.388 {\rm Mg m}^{-3}$

 $0.40\times 0.35\times 0.20~mm$

 $\theta = 2.2-29.4^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 293 KBlock, orange

Mo Ka radiation, $\lambda = 0.71073$ Å

Cell parameters from 4815 reflections

				. 87
Fractional atomic coordinates and	isotropic or	equivalent isotropic	displacement param	eters (A ²)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
O1	0.14067 (16)	0.31774 (10)	0.53905 (6)	0.0588 (3)
O2	0.23915 (17)	0.77316 (10)	0.53322 (7)	0.0623 (3)
O3	0.44816 (18)	0.19062 (10)	0.30395 (6)	0.0633 (4)
N1	0.35081 (16)	0.29295 (10)	0.40381 (6)	0.0405 (3)
N2	0.42897 (16)	0.38962 (10)	0.30579 (6)	0.0422 (3)
C1	0.32994 (17)	0.40923 (11)	0.41903 (7)	0.0342 (3)
C2	0.27111 (16)	0.47213 (11)	0.47863 (7)	0.0342 (3)
C3	0.18650 (18)	0.41799 (12)	0.54058 (7)	0.0387 (3)

C4	0.14672 (17)	0.49192 (13)	0.60472 (8)	0.0408 (3)
C5	0.0848 (2)	0.43992 (15)	0.66656 (9)	0.0532 (4)
H5	0.0729	0.3601	0.6683	0.064*
C6	0.0408 (2)	0.50686 (19)	0.72553 (9)	0.0635 (5)
Н6	-0.0001	0.4719	0.7671	0.076*
C7	0.0572 (2)	0.62479 (19)	0.72301 (10)	0.0649 (5)
H7	0.0265	0.6693	0.7627	0.078*
C8	0.1187 (2)	0.67763 (16)	0.66225 (10)	0.0557 (4)
H8	0.1301	0.7575	0.6610	0.067*
C9	0.16416 (18)	0.61104 (13)	0.60235 (8)	0.0427 (3)
C10	0.22782 (18)	0.66824 (13)	0.53631 (8)	0.0428 (3)
C11	0.27960 (17)	0.59389 (12)	0.47464 (7)	0.0372 (3)
C12	0.3362 (2)	0.64983 (13)	0.41289 (8)	0.0443 (3)
H12	0.3403	0.7301	0.4122	0.053*
C13	0.38660 (19)	0.58851 (12)	0.35255 (8)	0.0437 (3)
H13	0.4219	0.6261	0.3108	0.052*
C14	0.38263 (17)	0.47023 (12)	0.35652 (7)	0.0368 (3)
C15	0.4124 (2)	0.28065 (13)	0.33395 (8)	0.0451 (4)
C16	0.4861 (2)	0.40982 (14)	0.23155 (7)	0.0462 (4)
H16A	0.5829	0.3603	0.2237	0.055*
H16B	0.5234	0.4893	0.2277	0.055*
C17	0.3483 (2)	0.38657 (17)	0.17310 (9)	0.0595 (5)
H17	0.3070	0.3114	0.1688	0.071*
C18	0.2826 (3)	0.4620 (2)	0.12858 (11)	0.0851 (7)
H18A	0.3206	0.5380	0.1312	0.102*
H18B	0.1969	0.4409	0.0935	0.102*
C19	0.3537 (2)	0.18926 (12)	0.45100 (8)	0.0431 (3)
H19A	0.3615	0.2133	0.5023	0.052*
H19B	0.4552	0.1448	0.4424	0.052*
C20	0.2018 (2)	0.11366 (14)	0.43818 (8)	0.0498 (4)
H20	0.0939	0.1461	0.4403	0.060*
C21	0.2140 (3)	0.00335 (17)	0.42404 (11)	0.0695 (5)
H21A	0.3207	-0.0307	0.4217	0.083*
H21B	0.1158	-0.0411	0.4163	0.083*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0796 (8)	0.0408 (6)	0.0591 (7)	-0.0081 (6)	0.0298 (6)	-0.0009 (5)
O2	0.0821 (9)	0.0354 (6)	0.0711 (8)	-0.0067 (6)	0.0191 (6)	-0.0114 (5)
O3	0.1046 (10)	0.0388 (6)	0.0494 (7)	0.0101 (6)	0.0285 (6)	-0.0027 (5)
N1	0.0577 (7)	0.0304 (6)	0.0343 (6)	0.0046 (5)	0.0110 (5)	0.0026 (4)
N2	0.0573 (7)	0.0374 (6)	0.0330 (6)	0.0023 (5)	0.0113 (5)	0.0013 (5)
C1	0.0386 (7)	0.0309 (6)	0.0332 (6)	0.0013 (5)	0.0033 (5)	0.0014 (5)
C2	0.0356 (7)	0.0342 (7)	0.0327 (6)	0.0008 (5)	0.0021 (5)	0.0006 (5)
C3	0.0418 (7)	0.0374 (7)	0.0373 (7)	0.0022 (6)	0.0067 (6)	0.0014 (6)
C4	0.0381 (7)	0.0484 (8)	0.0363 (7)	0.0042 (6)	0.0048 (6)	-0.0015 (6)
C5	0.0589 (10)	0.0575 (10)	0.0447 (8)	0.0056 (8)	0.0151 (7)	0.0033 (7)

C6	0.0697 (11)	0.0793 (13)	0.0434 (9)	0.0053 (10)	0.0189 (8)	-0.0030 (9)
C7	0.0712 (12)	0.0783 (14)	0.0465 (9)	0.0071 (10)	0.0143 (8)	-0.0192 (9)
C8	0.0608 (10)	0.0552 (10)	0.0518 (9)	0.0046 (8)	0.0077 (8)	-0.0152 (8)
C9	0.0399 (7)	0.0472 (8)	0.0409 (7)	0.0030 (6)	0.0024 (6)	-0.0077 (6)
C10	0.0443 (8)	0.0376 (8)	0.0466 (8)	-0.0008 (6)	0.0034 (6)	-0.0079 (6)
C11	0.0395 (7)	0.0330 (7)	0.0392 (7)	0.0004 (5)	0.0028 (6)	-0.0015 (5)
C12	0.0560 (9)	0.0311 (7)	0.0462 (8)	-0.0028 (6)	0.0064 (7)	0.0023 (6)
C13	0.0548 (9)	0.0366 (7)	0.0404 (7)	-0.0025 (6)	0.0087 (6)	0.0061 (6)
C14	0.0408 (7)	0.0361 (7)	0.0339 (7)	0.0010 (6)	0.0052 (5)	0.0013 (5)
C15	0.0618 (9)	0.0382 (8)	0.0365 (7)	0.0053 (7)	0.0123 (7)	0.0003 (6)
C16	0.0564 (9)	0.0479 (8)	0.0360 (7)	-0.0006 (7)	0.0158 (6)	0.0019 (6)
C17	0.0686 (11)	0.0708 (12)	0.0406 (8)	-0.0083 (9)	0.0168 (8)	-0.0026 (8)
C18	0.0780 (14)	0.131 (2)	0.0468 (10)	0.0076 (13)	0.0107 (9)	0.0108 (12)
C19	0.0573 (9)	0.0331 (7)	0.0394 (7)	0.0057 (6)	0.0076 (6)	0.0057 (6)
C20	0.0611 (10)	0.0430 (8)	0.0458 (8)	0.0004 (7)	0.0067 (7)	0.0062 (7)
C21	0.0869 (13)	0.0486 (10)	0.0739 (13)	-0.0104 (10)	0.0114 (10)	-0.0024 (9)

Geometric parameters (Å, °)

O1—C3	1.2154 (18)	С8—Н8	0.93
O2—C10	1.2200 (18)	C9—C10	1.483 (2)
O3—C15	1.2170 (17)	C10—C11	1.4884 (19)
N1—C1	1.3867 (16)	C11—C12	1.3908 (19)
N1—C15	1.3918 (18)	C12—C13	1.383 (2)
N1—C19	1.4742 (17)	C12—H12	0.93
N2—C15	1.3708 (19)	C13—C14	1.372 (2)
N2—C14	1.3757 (17)	С13—Н13	0.93
N2—C16	1.4647 (17)	C16—C17	1.493 (2)
C1—C2	1.4056 (18)	C16—H16A	0.97
C1—C14	1.4194 (18)	C16—H16B	0.97
C2—C11	1.4139 (19)	C17—C18	1.277 (3)
C2—C3	1.4800 (18)	С17—Н17	0.93
C3—C4	1.4934 (19)	C18—H18A	0.93
C4—C9	1.387 (2)	C18—H18B	0.93
C4—C5	1.388 (2)	C19—C20	1.486 (2)
C5—C6	1.382 (2)	C19—H19A	0.97
С5—Н5	0.93	С19—Н19В	0.97
C6—C7	1.373 (3)	C20—C21	1.308 (2)
С6—Н6	0.93	С20—Н20	0.93
С7—С8	1.375 (3)	C21—H21A	0.93
С7—Н7	0.93	C21—H21B	0.93
C8—C9	1.397 (2)		
C1—N1—C15	109.44 (11)	C2C11C10	121.50 (12)
C1—N1—C19	132.32 (11)	C13—C12—C11	121.32 (13)
C15—N1—C19	116.86 (11)	C13—C12—H12	119.3
C15—N2—C14	109.90 (11)	C11—C12—H12	119.3
C15—N2—C16	122.09 (12)	C14—C13—C12	117.55 (13)
C14—N2—C16	128.00 (12)	C14—C13—H13	121.2
N1—C1—C2	134.84 (12)	C12—C13—H13	121.2

N1—C1—C14	106.28 (11)	C13—C14—N2	129.39 (13)
C2C1C14	118.87 (12)	C13—C14—C1	123.19 (13)
C1—C2—C11	117.30 (12)	N2-C14-C1	107.40 (12)
C1—C2—C3	123.31 (12)	O3—C15—N2	126.33 (14)
C11—C2—C3	119.10 (12)	O3—C15—N1	126.71 (14)
O1—C3—C2	122.25 (13)	N2	106.95 (12)
O1—C3—C4	119.32 (13)	N2-C16-C17	112.01 (13)
C2—C3—C4	118.31 (12)	N2—C16—H16A	109.2
C9—C4—C5	119.78 (14)	С17—С16—Н16А	109.2
C9—C4—C3	121.35 (13)	N2-C16-H16B	109.2
C5—C4—C3	118.81 (14)	C17—C16—H16B	109.2
C6—C5—C4	119.96 (17)	H16A—C16—H16B	107.9
С6—С5—Н5	120.0	C18—C17—C16	125.0 (2)
С4—С5—Н5	120.0	C18—C17—H17	117.5
C7—C6—C5	120.24 (17)	С16—С17—Н17	117.5
С7—С6—Н6	119.9	C17-C18-H18A	120.0
С5—С6—Н6	119.9	C17—C18—H18B	120.0
C6—C7—C8	120.54 (16)	H18A—C18—H18B	120.0
С6—С7—Н7	119.7	N1—C19—C20	113.92 (13)
С8—С7—Н7	119.7	N1—C19—H19A	108.8
C7—C8—C9	119.83 (18)	С20—С19—Н19А	108.8
С7—С8—Н8	120.1	N1—C19—H19B	108.8
С9—С8—Н8	120.1	С20—С19—Н19В	108.8
C4—C9—C8	119.64 (15)	H19A—C19—H19B	107.7
C4—C9—C10	120.54 (13)	C21—C20—C19	122.60 (17)
C8—C9—C10	119.81 (15)	C21—C20—H20	118.7
O2—C10—C9	120.76 (13)	С19—С20—Н20	118.7
O2—C10—C11	121.17 (14)	C20—C21—H21A	120.0
C9—C10—C11	118.07 (13)	C20—C21—H21B	120.0
C12—C11—C2	121.62 (13)	H21A—C21—H21B	120.0
C12—C11—C10	116.87 (13)		
C15—N1—C1—C2	178.83 (15)	C1—C2—C11—C10	-177.23 (12)
C19—N1—C1—C2	-15.3 (3)	C3—C2—C11—C10	8.7 (2)
C15—N1—C1—C14	-0.69 (16)	O2-C10-C11-C12	-1.9 (2)
C19—N1—C1—C14	165.13 (14)	C9—C10—C11—C12	179.00 (13)
N1-C1-C2-C11	176.13 (15)	O2—C10—C11—C2	178.30 (14)
C14—C1—C2—C11	-4.39 (18)	C9—C10—C11—C2	-0.8 (2)
N1—C1—C2—C3	-10.1 (2)	C2-C11-C12-C13	0.1 (2)
C14—C1—C2—C3	169.38 (12)	C10-C11-C12-C13	-179.75 (14)
C1—C2—C3—O1	-10.6 (2)	C11—C12—C13—C14	-1.6 (2)
C11—C2—C3—O1	163.09 (14)	C12—C13—C14—N2	-178.38 (14)
C1—C2—C3—C4	173.42 (12)	C12-C13-C14-C1	-0.1 (2)
C11—C2—C3—C4	-12.91 (19)	C15—N2—C14—C13	176.95 (15)
O1—C3—C4—C9	-166.55 (14)	C16—N2—C14—C13	-3.9 (3)
C2—C3—C4—C9	9.6 (2)	C15—N2—C14—C1	-1.58 (16)
O1—C3—C4—C5	10.9 (2)	C16—N2—C14—C1	177.55 (14)
C2—C3—C4—C5	-172.99 (13)	N1—C1—C14—C13	-177.27 (13)
C9—C4—C5—C6	0.0 (2)	C2-C1-C14-C13	3.1 (2)
C3—C4—C5—C6	-177.51 (15)	N1—C1—C14—N2	1.38 (15)

C4—C5—C6—C7	0.4 (3)	C2-C1-C14-N2	-178.24 (12)
C5—C6—C7—C8	-0.5 (3)	C14—N2—C15—O3	-177.54 (17)
C6—C7—C8—C9	0.3 (3)	C16—N2—C15—O3	3.3 (3)
C5—C4—C9—C8	-0.2 (2)	C14—N2—C15—N1	1.15 (17)
C3—C4—C9—C8	177.27 (14)	C16—N2—C15—N1	-178.04 (13)
C5—C4—C9—C10	-179.13 (14)	C1—N1—C15—O3	178.43 (16)
C3—C4—C9—C10	-1.7 (2)	C19—N1—C15—O3	10.1 (3)
C7—C8—C9—C4	0.0 (2)	C1—N1—C15—N2	-0.26 (18)
C7—C8—C9—C10	178.99 (15)	C19—N1—C15—N2	-168.54 (12)
C4—C9—C10—O2	178.08 (14)	C15—N2—C16—C17	76.63 (19)
C8—C9—C10—O2	-0.9 (2)	C14—N2—C16—C17	-102.40 (18)
C4—C9—C10—C11	-2.8 (2)	N2-C16-C17-C18	116.73 (19)
C8—C9—C10—C11	178.24 (14)	C1-N1-C19-C20	109.60 (18)
C1—C2—C11—C12	2.9 (2)	C15—N1—C19—C20	-85.41 (17)
C3—C2—C11—C12	-171.10 (13)	N1-C19-C20-C21	126.87 (17)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!-\!\!\!\!\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
C13—H13···O3 ⁱ	0.93	2.49	3.406 (2)	168
C16—H16B···O3 ⁱ	0.97	2.42	3.362 (2)	165
Symmetry codes: (i) $-x+1$, $y+1/2$, $-z+1/2$.				

